Calibration procedures for the Tracker

Draft 1.0 KG, NM 7/11/00

Scope

Preliminary procedures are given for the test and calibration required during start-up and running of the Tracker. The various elements of the detector and readout chain are considered in turn, with consideration of the different parameters to be calibrated. The procedures are outlined along with the beam, trigger and DAQ conditions, the frequency of calibration, the time required and the type and volume of data produced and the handling of the calibration data.

Intro

Readout chain overview
Sub-elements
Quantities
- comments on overall calibration requirements
- overall self-calibrating with signals
- special runs mainly during startup
- few instabilities expected over short durations
- desire to avoid much communication during running.
Control system overview
Partitions
Rings
 impact on calibration procedures
Trigger and DAQ overview
Global (+partitions)
Standalone
- impact on calibration procedures

During start-up (or re-start after shutdown)

System level

- Verify the functionality of standalone trigger/DAQ system (WB, PGV, RAL)
- Test the electrical/optical connections and basic functionality of control system (- AM)
- Test electrical/optical connections and basic functionality of analogue readout chains (- *IC*, *CERN*, *RAL*)
 - Develop simple procedure for uniquely identifying analogue data from individual APVs.
 - One idea could be to use different test-pulse patterns to mimic an 8-bit address.
 - Exercise optical links to determine if errors are at level of optical link connection.
 - Correct wrong connections/addresses (repair hardware or read/write database).
 - Store dead chip/link addresses (read/write database).

Sensors (-?)

- Scan for noisy, dead strips compare with production tests (read/write database).
- Bias voltage scan [, leakage currents, temperature] compare with production tests (*read/write database*).

- Backplane (or incident laser?) pulses compare with production tests (read/write database).
- [Alignment check/store initial references (read/write database).]

APVs (IC, RAL)

- Synchronize APVs at level of 25ns bin, using known cable lengths (read/write database) (NM, AM)
- Measure pedestals and noise. Compare with production tests. (read/write database)
- Measure common mode noise. (write database)
- Measure/optimize Pulse shape. Compare with production tests. (read/write database)
- [Set appropriate analogue baseline. (read/write database)]

Optical links (-CERN)

- Set laser bias-points (read/write database)
- Set laser gains (read/write database)
- Set receiver offsets (*read/write database*)
- Measure transfer characteristic? Compare with production tests. (read/write database)
- Measure noise. Compare with production tests. (read/write database)
- Measure linearity. Compare with production tests. (read/write database)
 use APV pulses or laser dc bias?

FEDs (-RAL)

- Measure pedestals and write lookup table
- [Check basic functionality standalone/global analogue data transfer, algorithms]

During operation (in-between physics runs)

System level

• Verify the functionality of standalone trigger/DAQ system

Sensors

- Scan for noisy, dead strips Compare with previous measurements (read/write database).
- Bias voltage scan, leakage currents- Compare with previous measurements (read/write database).
- Backplane (or incident laser?) pulses Compare with previous measurements (read/write database).
- Alignment Compare with previous measurements (read/write database).

APVs

- Measure pedestals and noise. Compare with previous measurements. (read/write database)
- Measure common mode noise. Compare with previous measurements. (read/write database)

Optical links

- Trim laser bias-points. Compare with previous measurements (read/write database)
- Trim laser gains. Compare with previous measurements (read/write database)
- Trim receiver offsets. Compare with previous measurements (read/write database)
- Measure noise. Compare with previous measurements. *(read/write database)*

FEDs

• Update pedestal lookup table

During operation (during physics runs)

System level

• Monitor the functionality of standalone DAQ system.

Sensors

- Find tracks and measure MIP response (on-line fast algorithm, read/write database).
- [Leakage currents, Temperature Compare with previous measurements (read/write database).]
- [Alignment with tracks (offline, read/write database).]

APVs

- Verify coarse synchronization using tracks (use APV in multi-mode at low luminosity?) (read/write database)
- Refine synchronization with MIP signal (shape) measurement (use APV in multi-mode at low luminosity?) (read/write database)
- Measure pedestals and noise verify that they match pre-run measurements. (*read/write database*) *how to do this, data normally compressed*.
- Measure common mode noise. Compare with previous measurements. (read/write database)

Optical links

No calibration actions

FEDs

- No calibration actions
- [Monitor occupancy of FEDs?]

Calibration action summary

Element	Parameter	Action	Duration	Frequency	Trigger	Beam	DAQ type	Data volume
Silicon	Response	Measure	Sample from	every N1	Physics	On	Global	1 value per
detector		Landau	continuous	runs				Z1 strips
			data-taking					
		(+Check for						
		dead strips)						
	Alignment with laser		12 evts/laser about 4MHz pulses	Every minute In the abort gap	Synchronous with laser	On/Off	Global	

APV	Pedestals and	Measure dc	X1 sec per	Every N2	Standalone	Off	Standalone	8 bits per
	noise	and rms	chip, measure	runs	Random T1	(special run)	(FED in	pipeline cell
		values each	Y1 at once	(also			scope mode)	
		pipeline		sometimes				
		location		during				
				physics runs)				
		Record dead						
		channels						
	Pulse shape	Measure	X2 sec per	Every N3	Standalone	Off	Standalone	8 hits x 32
	i uise shape	response to	chin	runs	(Calibrate	(special run)	(FED in	$\frac{30000}{10000000000000000000000000000000$
		calibration	Y2 chips at	Tuns	request '11')	(special rail)	scope mode)	channels if
		pulse and	once		(APV in		1 ,	measurement
		sweep			multimode?)			over 100ns
		latency and						interval
		fine clock						
		delay						
		Iterate until						
		shape is						
		correct						
	Common	Measure CM	Sample	Every run	Physics and	On/Off	Standalone	8hits per chip
	mode noise	normally	during data-	Livery run	Standalone	011/011	Standarone	oons per emp
	1110 40 110100	subtracted at	taking		Sundarone			
		the FED						
	a 1	<u> </u>	1/2	.	DI .	0	G. 11	T
	Synchronizati	Check and	X2 sec per	At start-up	Physics	On	Standalone	Latency +
	on	Tine-adjust	chip V2 abing at			(special	or global?	PLL setting
		able delays	1 2 chips at			run:) APV in multi		per emp
		by tracking	once			mode?		
		by nucking				moue:		

Element	Parameter	Action	Duration	Frequency	Trigger	Beam	DAQ type	Data volume
Optical link	Laser bias	Sweep laser	X4 sec per	At start-up or	Standalone	Off	Standalone,	1 setting per
	point	bias via I2C,	laser	restart +		(special run)	FED in scope	laser
		use APV	Y4 lasers at	every N4			mode	
		tick-mark	once	runs				
		amplitude to						
		find						
		appropriate						
		offset.						
	Gain	Measure dc			Standalone	Off	Standalone,	1 gain value

	transfer characteristic or scan APV test pulse amplitude. Record dead channels			(calibrate request +) trigger	(special run	FED in scope mode	per laser
Reciever dc offset	Set Rx offset to maximize dynamic range	X5 sec per laser Y5 lasers at once	At start-up or restart + every N4 runs	None	Off (special run)	Standalone, FED in scope mode	1 setting per Rx
Link noise	Measure rms without APV signals, from samples in between APV ticks	X6 sec per laser Y6 lasers at once	At start-up or restart + every N4 runs	None	Off (special run)	Standalone, FED in scope mode	8 bits per link

Element	Parameter	Action	Duration	Frequency	Trigger	Beam	DAQ type	Data volume
FED	System Functionality	Check cabling Check for dead channels		At start-up or after maintenence	Standalone	Off	Standalone	?
	Linearity	Inject pulses Or APV pulses		At start-up	Calibrate request '11'	Off	Standalone	?
	LUT	Check/update contents		Before physics run	None	Off	Standalone	-

Notes (not exhaustive! Please add additional comments):

- (i) Programs for automatic optimization of parameters and synchronization need to be defined
- (ii) Interfaces to be defined with database of tracker parameters, production database and reconstruction database.
- (iii) Missing values X, Y, Z, N to be determined.