
Ivan D Reid 10-Mar-2003

CMS Silicon Strip Tracker FED
Data Modelling in ORCA

Ivan D Reid
Brunel University

In collaboration with

Tomasso Boccali
Teddy Todorov

CERN

Ivan D Reid 10-Mar-2003

CMS Silicon Strip Tracker FED
The Physical Reality

Each Silicon Strip Tracker FED is
contained on a single 9U VME board.
Each FED takes in 8 12-way optical-fibre
ribbons.
Each optical fibre has multiplexed
analogue signals from two APVs.
Each APV collects signals from 128
silicon strips.
(There will be ~18 FEDs per VME crate.)

This means potentially 96x256=24K data
values per FED per selected bunch
crossing.

The FED:
• Digitises each incoming data stream into

256 10-bit words;
• Subtracts individual pedestal values from

each channel;
• Re-orders the data into physical order;
• Subtracts a common-mode base-line;
• Performs “zero-suppression” to reduce

the amount of data (signals below a
threshold are discarded);

• Packages the data and transmits them to
the DAQ system.

•The purpose of this exercise was to provide data-streams in the FED format, and also code
for re-insertion of the data into ORCA.

Ivan D Reid 10-Mar-2003

CMS Silicon Strip Tracker FED
ORCA Software Model

TTCrx

BE-FPGA
Event Builder

Buffers

FPGA
Configuration

DAQ
Interface

12

12

12

12

12

12

12

12

Front-End Modules x 8
Double-sided board

CERN
Opto-

Rx Analogue/Digital

96 Tracker
Opto Fibres

Xilinx
Virtex-II
FPGA

ORCA

StripDigisByPairOfAPVs

SiStripFedDigitizer.cc

SiFedZeroSuppress.cc

TkSimEventObserver::

vector<unsigned char *>
*FEDDataStreams() const

{ return FEDStreams;}

//Makes the data available

size_t NumberOfFeds() const

{ if (FEDStreams != 0)

return FEDStreams->size();

else

return 0;

} //Get no. of datastreams

FE-FPGA
Cluster
Finder

TTC

9U VME64x

Ivan D Reid 10-Mar-2003

Data Format

The FED can output data in four different formats
Scope Mode: Upon a trigger signal, up to 1020 10-bit samples will be made on each fibre.

No re-ordering or pedestal subtraction.
<fibre1_length[7:0]><fibre1_length[11:8]><packet_code><raw_word0[7:0]><raw_word0[9:8]>…
<fibre2_length[7:0]><fibre2_length[11:8]><packet_code><raw_word0[7:0]><raw_word0[9:8]>…

Virgin Raw Data Mode: Incoming frames will have no pedestal subtraction, and not be re-
ordered. (Data format as above.)

Processed Raw Data Mode: Incoming frames will have pedestals subtracted, and be re-
ordered. No common-mode subtraction or zero-suppression. (Data format as above except
strip data are 11 bits because of pedestal subtraction.)

Zero Suppression Mode: Incoming frames are fully processed and data truncated to 8 bits.
(This is the data format we are creating.)

<fibre1_length[7:0]><fibre1_length[11:8]><packet_code> à
<median1[7:0]><median1[9:8]><median2[7:0]><median2[9:8]>à
<cluster start address><cluster length><cluster data 0><cluster data 1>… etc.
<cluster start address><cluster length><cluster data 0><cluster data 1>… etc.
<cluster start address><cluster length><cluster data 0><cluster data 1>… etc.
<fibre2_length[7:0]><fibre2_length[11:8]><packet_code>…

Ivan D Reid 10-Mar-2003

Zero Suppression

The Cluster Finding algorithm is defined as:
All hits above thresh1 are output, except single-channel clusters which must be above thresh2
(where thresh2 > thresh1)

However, in order to cope with the needs of the Output FIFO Control block
it is necessary to slightly modify this with the additional rule:

All clusters must be at least 2 strips away from every other cluster; any clusters
violating this rule should be joined together.

NB: These clusters are different from those indicating track hits!

Ivan D Reid 10-Mar-2003

Data Types

Tommaso provided the following data types:
• typedef pair<int,int> DigiComponent; // channel and value inside an APVPair

• typedef vector<DigiComponent> APVPairDigis; // vector of single strip signals

• typedef pair<int,APVPairDigis> APVPairSignal; //APVPair number and signal for it

• typedef vector<APVPairSignal> FEDSignal; // all the signal from the ROU

Also provided:
• StripReadOutUnitAccessor::MasterTypeVector

StripReadOutUnitAccessor::masterReadouts(); //returns a vector of FEDSignal

So, all we have to do for each event is to iterate through the vector of ROUs,
iterating through each of its APV pairs (packing them into 96-pair “physical” FED
units), extracting the data for the hit strips as we go. Then the data are placed in
memory as the data format specifies. As a cross-check, the data are then re-
created and compared with the original values – this is a template for the data-
reading subroutine (whose interface has not been specified yet).

Ivan D Reid 10-Mar-2003

Some Details

The Public Declarations: These are the only parts of the module available to other
parts of ORCA:

class TkSimEventObserver : Observer<G3EventProxy*> {
public:

virtual void upDate(G3EventProxy* ev); //Called to create the data-streams
bool CheckFEDData(unsigned char *) const; //Unpacker for a single FED

//(currently just verifies vs. original)
vector<unsigned char *> *FEDDataStreams() const //Makes the data available

{ return FEDStreams;}
size_t NumberOfFeds() const //Public access to the number of datastreams

{ if (FEDStreams != 0)
return FEDStreams->size();

else
return 0;

}
…

Ivan D Reid 10-Mar-2003

What remains to be done?

• Definition of unpacker interface to ORCA and its implementation from the current
CheckFEDData() template.

• Integration of the code into Giacomo Bruno’s DAQ routines.
• Extension to full Virgin Raw Data format, especially in the context of Test Beam

acquisition.
• Determination of header and trailer details and their implementation. Fine details

of format: e.g. will zero-suppression clusters span the border between APV pairs
(requires a cluster size of zero to represent a 256-strip cluster)?

• Mapping of APV pairs to individual FEDs and the concomitant reverse mapping
from FEDs to detectors.

• Checking that ORCA’s zero-suppression implementation matches the physical
FED (e.g. do not omit data for single strips bridging clusters).

• Investigation of possible compression schemes to reduce further the amount of
off-line storage needed for event data.

